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GENERATION OF STIMULATED BACKSCATTERED HARMONIC RADIATION

FROM INTENSE LASER INTERACTIONS WITH BEAMS AND PLASMAS

I. Introduction

Recent technological advances have made possible compact teravatt

laser systems having high intensities (> 1018 W/cm2 ), modest energies

(> 1 J), and short pulses (< 1 ps). 1-2 These high laser intensities lead

to a number of new laser-plasma and laser-electron beam interaction

phenomena.3 '1  This paper discusses one such phenomenon, stimulated

backscattered harmonic (SBH) radiation generated by the interaction of

intense, linearly polarized laser fields with electron beams or plasmas11

[see Fig. 1]. The intense laser backscattering mechanism is essentially

stimulated coherent scattering in the strong-pump regime. For sufficiently

intense incident laser fields, the electron quiver velocity becomes highly

relativistic. The high laser intensity, along with the induced nonlinear

relativistic electron motion, results in the generation of stimulated

backscattered radiation at odd harmonics. In the interaction of an intense

laser pulse with a counterstreaming electron beam, SBH radiation is

generated via a free electron laser (FEL) mechanism,12-22 resulting in a

relativistic doppler frequency upshift. Hence, a laser-pumped FEL 13-17

(LPFEL) may utilize both the harmonic upshift as well as the doppler

upshift to generate short wavelength radiation. In the interaction of an

intense laser pulse with a stationary plasma, SBH radiation is generated

via a nonlinear Raman backscatter mechanism3'23 at odd multiples of the

fundamental laser frequency. Previous analyses of stimulated

backscattering of intense lasers from electron beams (i.e., LPFELs) or

plasmas, due to the complex dynamics of the laser-electron interaction,

have been limited to studies of the fundamental backscattered mode
13-17,23

In the following, a fully nonlinear analysis of SBH generation is

presented which is valid for arbitrarily high pump laser intensities. The

growth rates, saturation levels (efficiencies), and thermal limitations are

Manuscript approved February 4. 1992. 1



obtained for the SBH radiation generated from either an electron beam or a

plasma. Differences between the SBH radiation generated from an electron

beam and from a plasma are discussed. Sufficiently intense pump lasers and

sufficiently cold axial electron distributions are required for significant

radiation generation at high harmonics. The SBH mechanism may provide a

practical method for producing coherent radiation in the XUV regime.

In conventional FELs, a linearly polarized (planar) static magnetic

wiggler may be used to generate stimulated harmonic radiation at odd

multiples of the relativistic doppler upshifted fundamental FEL

18-21
frequency. In the LPFEL, the static periodic magnetic wiggler is

replaced by a counterstreaming intense laser field. 13-17 For a given

electron beam energy, the LPFEL can lead to substantially shorter

wavelength radiation than a conventional FEL, since the pump laser

wavelength (typically - 1 um) is several orders of magnitude smaller than

the conventional wiggler period (typically - 1 cm). In the LPFEL, the free

energy driving the radiation is available from both the electromagnetic

energy of the pump laser and the kinetic energy of the electron beam. In

conventional FELs, free energy is available from only the kinetic energy of

the electron beam and, hence, the FEL interaction vanishes in the limit of

vanishing beam energy. This, however, is not the case in the LPFEL

mechanism and SBH radiation may still be generated in the limit of zero

electron beam energy. Hence, an intense laser field interacting with a

stationary plasma may also generate SBH radiation. This process may be

viewed as nonlinear Raman backscattering in the strong-pump limit (or

strongly-coupled regime). 
23

Significant radiation generation at high harmonics in conventional

FELs, requires that the normalized amplitude of the magnetic wiggler field

be somewhat greater than unity.20  Similarly, in the LPFEL (as well as in
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the nonlinear Raman backscattering mechanism), it is shown that the growth

rate for the higher harmonics becomes significant when the normalized pump

laser amplitude exceeds unity, a° > 1, where a°  eAo/moc2 is the

normalized amplitude of the pump laser vector potential, A . The0

normalized laser amplitude, a0, is related to the power, P0 of a linearly

polarized laser by

P0 [GW] = 21.5(aor /X 0)
2

where r0 is the spot size of the Gaussian profile, X is the laser

wavelength and the power is in units of GW. Physically, a0 > 1 implies

that the electron quiver motion in the laser field is highly relativistic.

This may be seen from conservation of canonical transverse momentum which,

in the 1D limit (X < < ro), states that a° = YO,, where Y is the

relativistic mass factor and 0, = v,/c is the electron quiver velocity.

The nonlinearities associated with the highly relativistic electron motion

result in the generation of harmonic radiation. In terms of the laser

intensity (I° W 2Po/rr 
2 ), the quantity a is given by

0 0 0

a ° = 0.85 x lO 0-9XomlI 1/2[/cm 2

where X is in units of um and 10 is in units of V/cm2 . Relativistic

electron motion (a° 0  1) requires laser intensities greater than 1018 V/cm
2

for wavelengths of - 1 um. Such intensities are now available from compact

laser systems using a technique referred to as chirped pulse amplification

(CPA). The CPA technique allows ultra-short pulses (< 1 psec) to be

efficiently amplified in solid state media such as Nd:Glass, Alexandrite

and Ti:Sapphire. Alternatively, KrF excimer laser systems may be used to

generate ultra-high intensity, subpicosecond laser 
pulses.2
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The remainder of this paper is organized as follows. In Section II,

the generation of coherent SBH radiation is analyzed using a relativistic,

cold fluid theory. This theory includes the nonlinear effects of the pump

laser to all orders in the normalized vector potential, a . A dispersion

relation for the SBH radiation is obtained in the strong-pump regime, in

which the effects of the perturbed electrostatic potential are neglected.

Based on particle trapping arguments, the saturation level of the

backscattered harmonics is calculated in Section III. Limitations of the

theory due to thermal, space-charge and collisional effects are discussed

in Section IV. Examples of SBH generation using an electron beam and a

plasma are given in Section V. The growth rates, saturation efficiencies

and thermal requirements for SBH generation from electron beams and plasmas

are summarized in Table I. This paper concludes with a discussion in

Section VI.
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II. Intense Laser-Electron Interaction and Stimulated Harmonics

The 1D fields associated with the pump laser, backscattered radiation

and plasma response are described by the transverse vector potential, A,

and the scalar potential, #. In what follows the Coulomb gauge is used,

i.e., 7.A = 0, which in 1D implies Az = 0, where z is along the axis of

propagation of the SBH radiation. The polarization of the laser field is

arbitrary. The normalized potentials satisfy the field equations

[I--L! ],a-kk a (1a)

2- 2'af - =  Pn-Y ~
az c at ~ P no0

az 2  p o

where a(z,t) = IeIA/m0c2, *(z,t) = Ielt/m c 2 , w p = ckp = (4f[e2 n 0 /m0 )1/2

is the ambient plasma frequency, n(z,t) is the plasma density, n0 is the

ambient plasma density, = v/c is the normalized plasma fluid velocity and

S(1- -2 ~-1/2 +a 2 ) 1/2 /(1 - 02)1/2 is the relativistic factor.
z 1' + z

In obtaining the right side of Eq. (la) use is made of the fact that the

transverse canonical momentum is invariant and that prior to the laser

pulse interaction the particle distribution is assumed to have no

transverse velocity, i.e., =/.

The fluid quantities n, 0z' and y are assumed to satisfy the cold,

relativistic fluid equations which can be written in the form

an a+ c T (nz) 0 , (2a)

d c a 2 + (2b)
t 2y az a + c 8z'

11 La 2 + o(2c)
dt 2y at z az'
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where d/dt - 3/at + cza/az. The first term on the right side of Eq. (2b),

proportional to a 2 , represents the ponderomotive force. In the present

model, thermal effects have been neglected. This is valid provided (i) the

electron quiver velocity is much greater than the electron thermal velocity

and (ii) the thermal energy spread is sufficiently small so that electron

trapping in the plasma wave does not take place. The effect of a thermal

axial velocity spread on the wave-particle resonance is discussed in

Section IV. Also, the ions are assumed to be stationary.

It proves convenient to replace the independent variables (z,t) with

the independent variables (n,&) where n = z + ct and & = z - ct. To

transform Eqs. (1) and (2) from z,t to , variables, note that a/az = a/a

+ a/an and a/at = -c(a/a& - a/atl). In the new variables, Eqs. (1) and (2)

become

& - k 2  n) = , (3a)

( + k 2 p_ 1 (3b)2B

a1+ Jz)n) - ((l - Oz)n) =0, (3c)

'Y(1 + -(1 - ) =

-( + ) 4 + ), (3d)

y((1 + Oz)i-(1- Bz)z =

6



Introducing the new fluid quantities g - y(l - iz), h - y(l + 1) and

p - (yon)/(yno), where y is a constant equal to the initial relativistic

factor of the electrons prior to the laser interaction, Eqs. (3) become

4 kp)a = O, (4a)

+ = k 2( -j - 1), (4b)

=(ph) - =0, (4c)

h ah a 2 (La.+ (4e)

a2

where gh = 1 + a 2 , y= (h + g)/2 and 0z = (h - g)/(h + g).

To proceed with the analysis, the radiation is assumed to consist of a

large amplitude incident (pump) field traveling towards the left and a

small amplitude backscattered field traveling towards the right. The total

radiation field is denoted by

a = a(o)(I) + a(1)(M,1),

where a(O) is the incident pump (equilibrium) field, a(1) is the

backscattered (perturbed) field and (O)l >> Ia(1)I. The pump field,

a( ° ), is taken to be a function only of l (group and phase velocity equal

to c, assuming & o) « w0 ), which implies that the envelope of a(O) is non-

evolving, i.e., pump depletion effects are neglected. Since the

backscattered field may be temporally growing it is a function of both

and n. The fluid quantities all have the general form O(n,&) = 0(o)( ) +

0(1(&, ), where 0(o) represents the fluid quantity in the presence of only

7



the incident field, g(1) is the perturbed contribution due to the

backscattered field and 1W1)l << 1( °)1.

A. Equilibrium

Since the equilibrium quantities are functions of only the variable

r, Eqs. (4) become

a2  *(o) = k2(y(o)p(o)/Yo_ i) (Sa)
2 p

L(P(°)h(O )) = 0, (5b)

(h(o) - ,(0)) -0, (5c)

h(o)L a o L(a( ) 2( o #o (5d)

where the superscript (o) refers to quantities in the presence of only the

incident field, a(O)(n), and g(O) = (1 + (a(°)) 2)/h( o ) .

The equilibrium state of the electron fluid in the presence of the

pump field can be obtained from Eqs. (5) which, in terms of #(o), give

h(o0) + #(o)(n), (6a)

P(o) = yo(1 + 0o)/h(O)(n), (6b)

9 (o) = (1 + (a(0)(0)) 2)/h(°)(n), (6c)

where the pump field, a(O)(n), is assumed to be known, yo = (1 -1/2,

and 60 is the axial velocity of the fluid (electron beam or plasma) in the

absence of the pump field. The self-consistent scalar potential is given

by

8



2 * (o) 11 (+* (a(o)) (7a)
2 1 (o))2

where *(o) = ()1o( 1 + o and kp = kp /o3/2(1+0o). In the limit that

(°)l << 1, Eq. (7a) reduces to

( 2 k)2(o) 2(a(/))212. (7b)

The equilibrium between the pump laser and the electrons is given by

the expressions in Eqs. (6) together with the solution of Eq. (7a) for the

potential *(o) . The solution of Eq. (7a) is, in general, highly nonlinear.

However, simple solutions can be obtained under conditions which are

relevant to a wide range of applications. The pump laser/electron fluid

equilibrium will be considered in two limits. In these limits the

characteristic temporal variation of the pump laser envelope, 'TLv

(typically the pump laser rise time) is compared to an effective plasma

period, (Cp )-1

In the short pulse limit, TL << (cp)- , the magnitude of *(o) is much

less than unity, ,(o)I << 1, provided6 laol < 2/(c Lkp), where a is the

normalized amplitude of the pump laser envelope, e.g., a(o) = aocoskon. In

this limit, +(o) can be neglected in Eqs. (6).

In the long pulse limit, xL >> (ckp )-1, the left side of Eq. (7a) can

be neglected. Furthermore, it can be shown that the fast oscillatory part

of *(° ) (on the laser frequency time scale) can be neglected6 and, hence,

*(o) = (1 + a2/2)1/2_i.

For applications which utilize intense pump lasers with pulse lengths

on the order of a picosecond, the short pulse limit is relevant to

interactions with electron beams with densities no/ Yo << 1016 cm 3, whereas

9



the long pulse limit is relevant to interactions with stationary (7° y 1)

plasmas with densities no >> 106 cm 3 . It proves convenient to define the

equilibrium parameters h0 and Po, such that h(° ) = ho and p(o) - P.. The

values of the parameters h0 and p0 depend on which of the above two

equilibriums is being examined, i.e.,

h o(1 + 0o), e-beam (short pulse),
ho =i[o, plasma (long pulse), (8a)

(1 e-beam (short pulse),

Po =i /7I(, plasma (long pulse), (8b)

+ 
2 /21/2 (0)

where Y10= (1 + a/2) Hence, the equilibrium fluid quantities 0 o

7(o) and n(o) are given by

OP) = [h 2 1 _ (a(o))2]/[h2 + 1 + (a(o))2], (9a)

Y [)=h~ 24 1 +(a(OT)] /2h0 , (9b)

n(o) = (n p/2ho)[h2 + 1 + (a(o))2 ]. (9c)

Physically, the difference between the plasma (high density) equilibrium

and the electron beam (low density) equilibrium is due to the fact that in

the high density regime the ponderomotive force associated with the laser

envelope variation is balanced by the space-charge force, whereas in the

low density regime the ponderomotive force dominates.

B. Backscattered Radiation

To analyze the SBH radiation, Eqs. (4) are expanded about the

equilibrium state given in Eqs. (6). In the following, the perturbed

electrostatic field, *(1), is neglected. This is valid provided
12'20'2 3
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the temporal growth rate of the backscattered harmonic radiation is much

greater than the relativistically corrected plasma frequency, Wp/ 3/2.  In

this strong-pump regime, the SBH radiation is completely described by the

fluid equations

h2 8 - (1+a2) h = - h ' a2 , (10a)

2h (l0b)
[h - (1+a-i a a-wJ

along with the wave equation, Eq. (4a), and the equilibrium given by Eq.

(8).

The self-consistent closed set of perturbed quantities, h(l), p(1) and

a( ) , satisfy

- h~l) = - 2 L (o)- a(' (11a)

(M = - h- P L h 'l) (lb)
o3

I' a2  kP 0) (1
_ 4 Y a() _ (O)(1) (llc)

where V(rj) = (1 + (a(o))2 )/h 2. To proceed, the perturbed quantities are
0

h(1) A l)ek/2 + c.c., where k is complex and

the amplitude is a function of n. Using this representation the perturbed

amplitudes are given by

( ikij())hl(n) = 2ik a(o)(1l)a (n), (12a)

- ik(t) pl( ) - P0 ahl(1) (12b)

h 0 a 1



(ik L - '~ ,n P a- (o)(V0Plp1O (120)

Equations (12a) and (12b) have the solutions

hln eieen)Je-ie01l) (- l- a(0)(nl ).al(nI))drl, (13a)
i h 0

= - hl() + eiev) egio(11) (- k li(tI') jn+ ,
PO 0 fh0

(13b)

where 0(n) = kf U0111ni

Taking the incident field to be a (o) = a coskonf and the complex

A
amplitude of the backscattered harmonic field to be a = a exp(i~kni), where

hk is complex, the solutions to Eqs. (13a) and (13b) become

=k A--)i~b J b -JC+(b

h 1(n ( 1r k0(1+2e) - Ak)

*exp(ilk 0(1 + 2(e.+n)) + Akin), (14a)

Pin_ 2kk A Z b i b - JE+ ( b))

=P -a to a (l)'Jn~b 2
o 0~ t~n-1-(k - k 0(1+2t.) - k

expfijk 0 (1+2(C+n)) + Akin, (14b)

wher W =ky2 Ah2 and b = ka 21(4k h 2). In obtaining the expressions for
Y-L o0 0 0

12



hl(rI) and pl(rI), the Bessel identity, exp(ibsinx) = Jn(b)exp(inx), was

used. Also, near resonance the first term on the right of Eq. (13b) has

been neglected and the initial value terms in Eqs. (13a) and (13b) have

been neglected compared to the exponentially growing modes.

C. Dispersion Relation

The dispersion relation for the SBH modes may be obtained from the

perturbed wave equation. Substituting Eq. (14b) into Eq. (12c) and

requiring that both sides of the equation have the same n dependence,

yields

2-2 Po 22 (J - JC+1)2
2 + o kk- 2 ' (15)

o Yoh o  - k - (2C+1)k 0- 2k]

A A
where a i a = aoal has been assumed. The frequency, (a, and temporal

growth rate, r, may be determined from the above expression by setting

k = W/c - &k. The backscattered radiation has the phase dependence a
( 1 )

exp[i(w/c)& + i2ct k], where the temporal growth rate is given by r = -

2cIm(Ak). The dispersion relation indicates that the resonant frequency of

the C th mode is

w= N M (16)

= )2
where N = 2E+1 is the harmonic number and M° = (ho/y1 o) is the frequency

multiplication factor which is dependent on the particular equilibrium

being examined, i.e.,

y (l + o) /(1 + a /2), e-beam,

= ii, plasma.

13



Assuming lw/cl >> I k >> k p/ 3/2, the dispersion relation reduces to

pk2k MF (b)3  Po oL
0 (1 + Mo) 2(8

where F bE[JE(b C J +1(b d] 2 is the harmonic coupling function2 0 and

2 2
b -- (2t + 1)a /4y2 The temporal growth rate is

o 1o 1

2 1/3

rD O =.S (19a)
Y 0(1+O) 

2

A plot of the function 1/3 versus b° = a
2/4 2  for N = 1+2C = 1,3,5...19E o Ylo

is shown in Fig. 2. For a relativistic electron beam in which h0 = 2y0 >>

Y1 o, the growth rate is given by

r p c 2 t2 F/43] . (19b)

For a plasma, the growth rate is given by

1/3
r = 3c[k koFC/4Yio I (19c)

The asymptotic value of the harmonic coupling function FC(bE) for

a2 >> 1 and C >> 1 can easily be found. In this asymptotic limit, b =
0C

and J (M) - 3 (C) = J'(E) = 0.411C - 2/3. Hence,

1/3
F = 0.169/E1. (20a)

a2 >1,r -1 9

Notice that asymptotically (C >> 1, a 1), r - t 19, i.e., the growth
o

rate is a weakly decreasing function of C.

For small arguments, bc < 1, the harmonic coupling function is given

by

14



2(b C/2)2t+1 b 2 (20b)
Ft 2 1 b f 2(ti)2  L 1+) 2b

which, for a2/2 << 1, gives
0

Ft 2 [(2t+l)a2/8] 2C+1 j)-2. (20c)

Hence, in the limit (2t+1)a2/2 << 1, the growth rate is a rapidly02

decreasing function of t. Notice that for a2 /2 << 1 and t - 0, Eqs. (19c)
0

and (20c) indicate the growth rate of the fundamental backscattered
radiation from a plasma is r = (w 2a/16o)1/3, which is the standard

result for the Raman backscatter instability in the strong-pump or

strongly-coupled regime for a linearly polarized, low-power (a0 2 1)0

laser.
23
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III. Saturation

The present analysis indicates that the SBH radiation grows

exponentially, with a growth rate given by Eq. (19). This growth continues

until nonlinear effects (i.e., particle trapping) limit the amplitude. The

saturated value of the backscattered radiation may be determined from

arguments based on electron trapping in the ponderomotive wave. The growth

of the radiation will cease when the generalized ponderomotive wave traps

the electrons. For small amplitude pump fields, la01 << 1, the

ponderomotive wave is proportional to the product of the stimulated

backscattered radiation and the pump field, a(  • a . In the present

analysis a generalized ponderomotive wave is obtained for arbitrarily large

values of laol. The nonlinear effects of the pump field, in the

generalized ponderomotive wave, are included to all orders.

The combined action of the pump laser and the stimulated backscattered

radiation results in a generalized ponderomotive wave which produces a

fluid wave, p(1), with the same phase,

P (l) I C~ exp fi[(2 + 1+ 2n)ko + Ak)]Ir) + ik4,l (21)

C,n

as indicated by Eq. (14b), where p(1) = pj(1j)exp(ik)/2 + c.c. and CC, n are

constant coefficients. The generalized ponderomotive wave consists of a

sum of individual modes characterized by the mode numbers (,n). Since

= z-ct, n - z+ct and k = w/c - Ak, the normalized phase velocity for a

particular generalized ponderomotive mode (C,n) in Eq. (21) is given by

/c - (2t + 2n + 1)k - 2k
p(.,n) = W/c + (2 + 2n + 1)k (22a)

16



At a particular resonant frequency o = (2E + 1)M0o o of the Lth mode, the

phase velocity in Eq. (22a) becomes

0 (tn) - (H0 - 1)(2. + 1)k0 - 2nk0 - 2&k
p (H° + 1)(2t + 1)k + 2nk (22b)

Particle trapping for a particular n mode occurs when the longitudinal

fluid velocity of that mode is equal to the phase velocity in Eq. (22b).

Trapping occurs first for the n - 0 mode, since it is the mode with phase

velocity closest to the equilibrium velocity of the electrons.

The longitudinal fluid velocity of the electrons is given by 1z0

(h-g)/(h+g), which can be written as

h2 - (1+ a2) (23)
1Z - h2 + (1 +a 2)

.(o) (1

In terms of equilibrium and perturbed quantities, 3z = 0) + 3 ) , where

the average value of 0(o) is <(o)> L (M-1)/(Mo+1). Expanding Eq. (23),

the leading order contribution to the perturbed velocity at resonance is

given by

0(1) 4M0  h(1 )

- (1+ )2 h ' (24)
z 1 + M° O

where h(1 ) is composed of a collection of n modes, the phase velocity of

the nth mode given in Eq. (22b). Using Eq. (14a), the perturbed fluid

velocity of the n th mode is given by

16a M2 ko
1 M 1a oo (bF ) •1/2 (25)

z a 0(1 + M 0 ) 3 k C n

Particle trapping occurs first for the n = 0 mode, which is the mode

with phase velocity closest to the equilibrium fluid velocity, <0(o)>,
z

17



0 (,n - 0) - <O(o)> + 6, (26a)
p z p

where

o= - 2Ak/(2E + 1)(1 + M )k . (26b)

The saturated level of the radiation field may be obtained from the

condition for deeply trapped electrons, 10l)1 = 216Sp , which gives for
z p

the n = 0 mode,

2 A 2
-~ 4a 1(2E + 1)M 0 1/2 (7

k 2 a(1 +M )2  (bF) /J° (27)

0 0 0

A numerical factor of order unity has been neglected on the left side of

Eq. (27). Using the dispersion relation, the ratio of the radiation power

in the Nth harmonic at saturation to that in the pump laser, PN /Po
.2 2 A 2 2
MoN II /ao , is given by

p 2(1 + Mo)] 4/3 F1/3S I 21/2 16b . (28)

2_1/2, =2' 4 o =12

A plot of the function F1 /b versus b. = a024A 12forN 1+2C

1,3,5...19 is shown in Fig. 3.

Note that asymptotically (t >> 1, a0 >> 1), PN /Po 0 -10/9/ 2

Furthermore, the efficiency may be substantially increased by operating in

a regime in which b = (1 + 2E)a2/4y o is near a zero of Jo, i.e., Jo(b )

0. Physically, the regime for which Jo (b ) = 0 for a particular C mode

corresponds to minimizing the perturbed fluid velocity 0() (, n = 0) of
z

that mode. This implies that a larger amplitude of backscattered radiation

18



will be reached before saturation occurs. At J0 (be) - 0, Eq. (28) no

longer applies, and saturation due to particle trapping must be determined

by consideration of the higher n modes. In general, Eq. (28) is valid

provided PN/Po < 1. If this is violated, then saturation will be caused by

some other mechanism besides particle trapping, i.e., plasma thermalization

or pump depletion. In particular, notice that for a plasma with C = 0 and

a2 << 1, Eq. (28) indicates PN/P° = (kp/2ako) 
4/3 and, hence, PN/Po < 1

implies a > k 2/2k 2.
o p o

It is also convenient to define an electronic efficiency, "e, which is

the ratio of the backscattered radiation power to the electron beam power,

Mi N Nk~ 0~ 12 (29a)
2N2k2 2 ( 2
o0 0

Using Eq. (28), the electronic efficiency may be written as

P (1 + )2 2 2 I kI
e 0 0 -oYo , (29b)

8JM 0 0 (1 - 1/y0 ) Nko

where Ik I = r/1/c is given by Eq. (19). Notice that for the fundamental

(E = 0) in the limit y >> 1 and a2 < < 1 , ne = r/2r3w , as is the case for
0 ~ 00122 2.. 3,1/3

conventional strong-pump FELs,12 where r = N(wpw 0oao/16yo YO/

19



IV. Thermal, Space-Charge and Collisional Effects

A. Thermal Effects

The above results were obtained using cold fluid theory, i.e.,

electron thermal effects were neglected. For a sufficiently thermal

electron distribution, however, it is possible for the longitudinal energy

spread to become large enough so as to degrade the resonant interaction

between the backscattered wave and the electron distribution. This thermal

electron interaction regime corresponds to a weak resonant instability in

which the growth rate of the backscattered radiation is greatly reduced.

It is possible to estimate how large a thermal electron velocity

spread can be tolerated before the resonant wave-particle interaction is

degraded. The growth rate of the cold electron instability is determined

largely by the resonant denominator, D, in the dispersion relation, Eq.

(15),

D a (k- (2t+1)k - kl2 ,  (30)

where k = k/M and M is given in Eq. (17). The effects of a longitudinal

thermal velocity spread 0th on the resonance may be estimated by letting 0 0

° 10+ Oth in the expression for D, where loth/(l+0o) << 1. At resonance,

/c = M (2e+l)k , one finds

2 2
D = [2O(+2t)kooth + (1+1/H 0 ) . (31)

Hence, in order to neglect for the effects of the thermal velocity spread

3th' it is necessary that

(1IH o ) I~k I/ko

<< 21M0)lk 0 (32)
'th 2y2H (2t+1)
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Using the dispersion relation, Eq. (32) yields the condition

213. 1/3

1 pok 2(1+14 ) 1/

<<p - F .(33)

th 2 1  2 2 E

A plot of the function 1/IN versus b° = a /4y for N - 1+2C = 1,3,5...19

is shown in Fig. 4. Asymptotically (E > 1 and a2 > 1), the right side of
010/9

Eq. (33) scales as C -1 /9. For a stationary plasma, the thermal energy of

the plasma is AE th= moc 2 Ih/2. For an electron beam with initial velocity

IS >> Oth and y >> 1, the normalized energy spread is given by byth/Yo
2 .2
o0th Note that for the fundamental (t = 0) in the limit y >> 1 and a°

<< 1, the thermal requirement is Ayth/yo << he' as is the case for

conventional strong-pump FELs operating at the fundamental.12 The usual

requirement regarding FELs operating at the fundamental, byth/Y ° << "e '

however, does not apply in general to harmonic generation.

B. Space-Charge Effects

The expressions for the growth rate of the SBH radiation, the

amplitude of the radiation at saturation and the allowable thermal energy

spread are all increasing functions of the electron density. Hence,

optimal generation of the SBH radiation implies operating in a regime of

high electron density. However, the fluid theory of Section II used to

describe the backscattered radiation assumed the strong-pump limit, i.e.,

assumed that the electron density was sufficiently low so that the effects

of the perturbed electrostatic potential may be neglected. This is valid

provided the relativistic plasma frequency is small compared to the growth
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rate of the radiation. More specifically, it can be shown that the strong-

pump limit is valid provided

Pok2 M2
<< I& 2. (34)

Y (1+Mo)2

This inequality gives an upper limit to the electron density for which the

strong-pump limit remains valid. Using the dispersion relation, Eq. (18),

gives

k 2/k 2 << Yo(l+Mo)2 F 2/PoMo  (35)
p 0o o0

Note that asymptotically (C >> 1 and a2 >> 1), the right side of Eq. (35)

scales as -2/3 . Strictly speaking, the results of the strong-pump theory

obtained in the previous sections are valid provided Eq. (35) is satisfied.

C. Collisional Effects

The effects of collisions on the backscattered harmonics may be

neglected provided the damping rate of the radiation field due to

collisions, 3 V = (2/ 2 )vei, is small compared to the growth rate of the
p e

radiation field, r, where v ei is the electron-ion collision frequency,

i.e., r >> (p/2 )ei.-- The relativistic collision frequency is given by
24

v [sec- 1 4.3 x 10 n [cm 3(lnA)0)- y , (36)

where lnA is the Coulomb logarithm. The collision frequency vei will be

largest for electrons in a dense plasma. For plasma electrons undergoing

relativistic quiver motion in the intense pump laser field,

( o~ -3 -? r1 [1 + (a 2 4 A )o2 k~
(0) Y = 3/2" (37)

a3Lcoskon + (a2/16 20Jcos 2 2 klJ
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An upper limit on Eq. (37) is given by

)-2 yol +ao/4lo

< a 3/2" (38)
a3(a2/16Y,2)3/2

In the limit a 2/2 >> 1, the right side of Eq. (38) reduces to 24/a 2.
0 0

Hence, for intense laser fields where a2 > 1, the condition that r > v is

easily satisfied.

23



V. Examples

The SBH instability described in the previous sections may be used as

a mechanism to generate coherent radiation in the XUV regime.

Conceptionally, a device may be designed to amplify a small XUV input

signal injected into a plasma or a co-propagating electron beam. TLe input

XUV signal may be obtained by the output of an incoherent source, such as a

flash lamp, or by using the incoherent single particle (spontaneous)

radiation generated by the interaction of the pump laser with the electron

distribution. The XUV radiation will be amplified as it propagates, via

the interaction with the intense, counter-propagating pump laser field.

Two examples will be discussed; one utilizing a stationary plasma and the

other utilizing a relativistic electron beam. In both examples, the pump

laser is taken to be an intense Nd:Glass laser (X° = 1 pm) with an

intensity of 10 = 9.7 x 1018 W/cm2 (a0 = 2.6) and a spot size of r° =

10 um, which gives a pump laser power of P = 15 TW.0

A. Backscattering from a Plasma

Consider the amplification of coherent radiation using a plasma of

density n0 = 1019 cm- 3, which corresponds to fully ionized H2 at about
5-8

0.1 atm. Neglecting the effects of relativistic optical guiding, the

interaction length is approximately either two vacuum Rayleigh lengths, 2ZR

= 2nr2/X = 630 um, or one-half the pump laser pulse length (which is 1500 0

pm for a 1 psec laser pulse), whichever is shorter. As an example,

consider the amplification of the third, E = 1, harmonic (and the fifth,

C = 2, harmonic) at a wavelength of X = 3300 A (2000 A). The e-folding

length is c/r = 1.8 Pm (2.0 Um). At saturation, the ratio of the harmonic

power to the pump laser power is PN/Po = 1.0 x (3.8 x I4), which

implies a saturation power of PN = 1.5 GW (5.8 GW). (The larger saturated
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2
power for the fifth harmonic is due to the factor 1/J0.) The pulse length

of the SBH radiation is approximately the transit length of the pump laser

pulse through the plasma. Optical guiding5-8 may substantially increase

this length beyond the vacuum diffraction limit of 2ZR = 630 Um. The

thermal requirement on the longitudinal energy spread is E th < 77 eV

(22 eV). Plasmas with sufficiently cold longitudinal temperatures may be

produced by laser-induced ionization.
25

B. Backscattering from an Electron Beam

Consider amplification of coherent radiation using an intense electron

beam with a current of 15 A, a beam radius of 10 um (a current density of

4.8 MA/cm 2 ) and an energy of 250 keV (y0 = 1.5). The interaction length is

approximately either two vacuum Rayleigh lengths, 2ZR = 630 pm, or one-half

the laser pulse length, whichever is shorter. As an example, consider the

amplification of the third, E = 1, harmonic at a wavelength of X = X0/3Mo =

0

2200 A. The e-folding length is c/r = 31 Um. The thermal requirement on

the longitudinal energy spread is by/(y o - 1) < 0.18%. The pulse length of

the SBH radiation is approximately the transit length of the pump laser

pulse through the electron beam, i.e., 2ZR = 630 pm. At saturation, the

ratio of the third harmonic power to the pump laser power is PN/Po =

1.1 x 10-9 , which implies a saturation power of PN = 17 kW. The electronic

efficiency at saturation is ne = 0.87%.
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VI. Discussion

The generation of coherent, stimulated backscattered harmonic (SBH)

radiation by the interaction of an intense, linearly polarized laser pulse

with an electron beam or a plasma has been analyzed using relativistic,

cold fluid equations. This theory includes the nonlinear effects of the

pump laser to all orders in the normalized vector potential, a . Ao

dispersion relation for the SBH radiation was obtained in the strong-pump

regime. In this regime, the effects of the perturbed electrostatic

potential are neglected. The resonant frequency of the Cth mode,

corresponding to the harmonic number N = 2C+1, is given by W/c = NM0 k 0 ,

where M0 is the frequency multiplication factor arising from the

relativistic doppler upshift. The temporal growth rate is given by Eq.

(19). Significant high harmonic generation, N >> 1, requires intense pump

lasers, a > 1. The SBH radiation from an electron beam may be viewed as a
12-22

nonlinear laser-pumped FEL mechanism, whereas the SBH radiation from a
23

plasma may be viewed as a nonlinear Raman instability mechanism, both in

the strong-pump regime.

The saturation amplitude of the SBH radiation was calculated based on

particle trapping arguments. Particle trapping (wavebreaking) occurs when

the amplitude of the perturbed longitudinal fluid velocity, 00), becomes
z

equal to the phase velocity, 0p. The perturbed fluid velocity, 001)
p

consists of a sum of individual waves characterized by the mode numbers

(E,n). For a particular C resonance, particle trapping occurs first for

the n = 0 mode, which is the component of 00) with phase velocity closest

to the equilibrium longitudinal electron velocity, <00)>. The resulting

saturation amplitude of the backscattered radiation is given by Eq. (26).

Furthermore, the saturation amplitude of the backscattered radiation may be

enhanced by operating in a regime in which be = (2+l)a 2/4y is close to a
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zero of the Bessel function J (b ). Physically, J. = 0 corresponds to

minimizing the amplitude of the n 0 component of the perturbed fluid

velocity O1) When this occurs, saturation may be determined from

consideration of the next higher n mode. It should also be pointed out

that particle trapping only leads to saturation for sufficiently intense

pump laser amplitudes for which PN/Po < 1. When this inequality is not

satisfied, saturation occurs by other nonlinear effects, such as electron

thermalization or pump depletion.

The most stringent constraint on the production of SBH radiation is

the restriction on the longitudinal thermal velocity spread. If the

longitudinal electron temperature is sufficiently high, the wave-particle

resonance is degraded and the growth rate of the backscattered radiation is

greatly reduced. The expression for the allowable thermal velocity spread

is given by Eq. (33). In general, this implies that very small thermal

spreads are required in order to generate high order harmonic radiation.

The expressions for the growth rate, saturation amplitude and allowable

thermal velocity spread indicate that high electron densities are required.

This appears to favor the use of stationary plasmas over that of

relativistic electron beams. However, the use of an electron beam has an

advantage in that the frequency of the harmonic radiation is

relativistically upshifted (in addition to the harmonic upshift), which

implies the radiation frequency may be tuned by adjusting the energy of the

electron beam or the amplitude of the pump laser, as indicated by Eq. (16).

The growth rates, saturation efficiencies and thermal spread requirements

for the SBH radiation are summarized in Table I. As the capability for

producing dense plasmas and electron beams with small thermal spreads

improves, along with future advances in ultra-high power laser technology,
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SBH generation may provide a practical method for producing coherent

radiation in the XUV regime.
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Table I.

Growth Rates, Efficiencies and Thermal Requirements for
Stimulated Backscattered Harmonic Generationt

Laser-Plasma Laser-Electron Beam
(Mo = 1, 3Y0 = 1) (Mo > 1, -'0 > 1)

Arbitrary ao < 1, Arbitrary ao < 1,
ao, N N = 1 ao, N N=1

Growth Rate ( wFI 1/3 (wa 2/3 V/3 1wF 3 V/3 (wpao 2/3

r/wo VFk 4wo±o) \ 4wo Y'o 4wo 70 4w
2 yj0 O-4- )-4/3

Laser Eff.3  40iP/ (_W 7 01N /
PI/Po V-3 a 2 J2 2w 2 ao V-3 2 J2 2wao

Electron. Eff. _IN 1 (wpao 2/3

,, 2vr'3oJo2 2y0 4 "'o )

Thermal Spread r )2 1 (,wPao4 / 3

,AEt,,/.-o ' 2< 6 wo 2 4,.o)

Energy Spread r/N 1 (wpao )2/3

A-Yth/7o < 2V-wo 270 'wo ,/

t wo is the pump laser frequency, wp is the plasma frequency, 7f0 is the initial relativistic

factor, ao = IeIAo/moc 2 is the normalized pump laser amplitude, 7±o (1 + a2 /2)1/2, N
(21+ 1) is the harmonic number, F = b [J(b) - J1+1 (b)]2 is the harmonic coupling function,
b = Na~o/4 0 and Mo is the frequency amplification factor, w = NMowo.

Formulas valid provided ao > wp/2 .
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Intense Pump Laser, Wo

Electron Beam

or

Plasma
Backscattered Harmonics, Wo = NMoCo

Fig. 1 Schematic of the incident pump laser field, - exp(iw 0 /c), of

frequency 0 , and the backscattered harmonic radiation field,

- exp(iwE./c), of frequency &), as obtained via stimulated

scattering from an electron beam or a plasma, where I = z + ct and

=z - ct.
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Fig. 2 The function F 1/ (proportional to the growth rate r) versus the

parameter b0  (a 2/4)/(l + a 2/2) for the harmonics N = 1,3,5... 19.
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Fig. 3 The function F 1/3 /b(proportional to the power at saturation
e2 2

P P)versus the parameter bo (a 2/4)/(l +- a 2/2) for the
N0 0 0

harmonics N = 1,3,5... .19.
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10 0.1 0.2 0.3 0.4 0.5

(ao/4)/(1 + a2/2)

Fig. 4 The function F 13IN (proportional to the upper limit of the

thermal velocity spread, ~t~versus the parameter b =(a 214)/(l
th0 0

+ a 2/2) for the harmonics N = 1,3,5... .19.
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